Supporting information for: ## Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer Sung Beom Cho and Yong-Chae Chung* Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 E-mail: yongchae@hanyang.ac.kr ^{*}To whom correspondence should be addressed Table S1: Stacking configuration of single-sided fluorographene with CL and substrates. | | Atomic structure | Stacking pattern | Interlayer
distance
w.r.t. CL
(Å) | Interlayer distance w.r.t. substrate (Å) | |-----------------------------|------------------|------------------|--|--| | $\mathrm{C_4F/BN}$ | | А-В | 2.81 | 2.81 | | $\mathrm{FC}_4/\mathrm{BN}$ | | А-В | 3.27 | 3.28 | | $\mathrm{C_4F/G}$ | | A-A | 2.89 | 2.85 | | FC_4/G | | А-В | 3.31 | 3.31 | Figure S1: Band structure of CL, C_4F , and substrates. The band of substrate, C_4F , and CL is colored with blue, red, and green, respectively. Figure S2: The band structure of $CL/C_4F/substrates$ for type-B alignment. (a) shows the band structure of $G/FC_4F/h$ -BN and G/h-BN. The band shift of graphene is 1.41 eV. (b) is for $BN/FC_4/Grpt$ and BN/Grpt and the shift of BN is 1.30 eV. Figure S3: Electron redistribution function of (a) C_4F/BN and (b) $BN/C_4F/BN$. The magnitude of the redistribution is similar between two systems.